細胞通過センサを有した集積化マイクロピペットによる
単一細胞回収
○田代和也1、益田泰輔1、新井史人1
1: 名古屋大学

新発想：MEMS技術とペーパーを組み合わせてピペット機能に革新を起こす！

Background

Single-cell analysis

- High-precision cancer diagnosis
- Clarification of Generation, differentiation
- Evaluation of rare cell

Resent researches found that cell mass is hetero. So, single-cell analysis is the more resent and highly regarded.

⇒Single-cell isolation/dispersing system is necessary.

Conventional technique

- Cell dispensing success rate is not perfect.
- It is serious problem in the case of rare-cell.

High-Functionalization of micropipette.

Glass capillary + Sensor = Integrated micropipette

Fabrication

We fabricated integrated micropipette from two glass substrate.

Design

- Capacitance sensor
 - High precision, high responsibility
 - Can be designed in µm order
 - Discriminate cell from bubble

- Capacitance between two electrodes
 \[C = \frac{\pi K \varepsilon_0 \varepsilon_\rho}{2d} \left(\frac{\varepsilon}{a} \right)^2 \left(\frac{2a}{w} + 1 \right) \]
 \[w : \text{effective width of electrodes} \]
 \[d : \text{depth of channel} \]

- Effective width of electrode
 \[w_{\text{eff}} = \frac{a}{d} \left(\frac{\varepsilon}{\varepsilon_\rho} \right)^{1/2} \]

Experiment

- We succeeded in fabricating glass capillary that have sensor for passage detection of cell.
- In experiment, we succeeded in sucking and detecting cell.

Conclusion

- We succeeded in fabricating glass capillary that have sensor for passage detection of cell.
- In experiment, we succeeded in sucking and detecting cell.

Reference