We present a novel fabrication method of three dimensional polymeric magnetically driven microtools (3D-MMT) for non-intrusive and no contamination experiments on a chip. A grayscale photolithography technique has been applied and produced smoothly curved (100 μm gap) object without steps. A wide range of on-chip application of microactuators by 3D-MMT have been proposed to complicated and sensitive motion such as microloader, uniquely actuated by a combination of magnetic and fluidic force.

Background:

New Protocol of Cloning Technique

- Removing zona pellucida
- Oocyte bisection
- Separation of enucleated demi-oocyte
- No use
- Coupling with donor cell
- Embryonic cell with genetically identical offspring

Fabrication:

Gray-scale Lithography Technique

- Parallel UV Ray
- Grayscale Mask
- Thick nega-photoresist
- Back side of Glass Substrate
- Light Proof Box
- Image Setter Film
- 1/20Reduction
- Reduction Lens
- Parallel UV Ray
- Gray Emulsion Glass Mask
- KMPR Photoresist
- UV Glass Substrate
- ① Photolithography
- ② Backside Exposure
- ③ PDMS-magnetite composite
- ④ Completed 3D MMT
- ⑤ Glass Substrate Stripper Liquid

Produced 3D MMT

Operation of Loading

- Fluidic force
- Magnetic force
- (a) t = 0 [sec]
- (b) t = 2.5 [sec]
- (c) t = 4.5 [sec]

Experiments:

3D MMT Valve

- MMT Valve
- Blocking of Multi-particles
- Transportation of Agglomerated Particles
- Requirement of Loading of Agglomerated Particles

Conclusions:

- We have developed 3D-MMT for cell-laden on-chip experiment.
- The 3D-MMT has a smooth curvature with 100 μm gap fabricated by gray-scale lithography techniques.
- The loading function was obtained by rotation of 3D-MMT.
- Gear-shaped MMT improved the efficiency of loading of particles with a combination of magnetic and fluidic forces.

References: